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Abstract

The revolution in neuroscientific data acquisition is creating an analysis challenge. We propose 

leveraging cloud-computing technologies to enable large-scale neurodata storing, exploring, 

analyzing, and modeling. This utility will empower scientists globally to generate and test theories 

of brain function and dysfunction.

Introduction

Technological advances from all around the globe (Grillner et al. 2016) are allowing 

neuroscientists to collect more precise, complex, varied, and extensive data than ever before 

(Sejnowski et al. 2014). How can we maximally accelerate our collective ability to extract 

meaning from such data? To answer this question, the United States Congress commissioned 

the National Science Foundation (NSF) to “convene government representatives, 

neuroscience researchers, private entities, and non-profit institutions” (https://

www.congress.gov/congressional-report/113th-congress/house-report/448). The NSF funded 

two events. The first was a workshop of over 75 individuals from 12 countries and 5 

continents that was broadcast live over the internet. Each person was invited to bring a single 

big idea—one that could have maximal impact, while being both feasible, given existing 

resources, and universally inclusive. Four ideas emerged as grand challenges for global brain 

science (Vogelstein et al. 2016). A second event was organized to discuss these ideas with a 

larger (425 participants) and more diverse community, which will be the subject of another 

article (Bargmann et al, in prep). The goal of this NeuroView is to describe one of the four 

grand challenges and propose a strategy to overcome it, in order to gather feedback from the 

larger community. The authors are participants in the first conference who volunteered to 

hash out these ideas via emails, online documents, conference calls, and in-person visits.
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The kernel of the idea is based on a view of the scientific process as an “upward spiral”: a 

collective effort where each new experiment yields data, upon which analysis is performed, 

leading to new or refined models, which suggest novel experiments (see Figure 1). 

Historically, the process of data analysis has been kept relatively simple by the small scale of 

data acquired. But recent advances in experimental technology, such as serial electron 

microscopy (Denk & Horstmann 2004), light sheet microscopy (Weber et al. 2014), and 

models of the whole human brain at the microscopic level (Amunts et al. 2013) have made 

data analysis significantly more challenging. While experimental neuroscience is enabling 

collection of ever larger and more varied data sets, information technology is undergoing a 

revolution of its own. Commercial development of artificial intelligence and cloud 

computing innovations are changing the computational landscape (Anon 2016). Computing 

is moving toward “cloudification,” a “software as a service” model, in which locally 

installed software programs are replaced by Web apps. These forces create a massive 

opportunity to develop new computational technologies that complement advances in data 

collection in order to accelerate and democratize model building, hypothesis testing, and 

model refinement.

What Would Change If We Capitalize on this Opportunity?

Consider sending a letter, watching a movie at home, or obtaining reference information. 

Ten to twenty years ago, to send a letter, we purchased paper, stamps, and envelopes; to 

watch a movie at home, we rented or purchased a VHS or DVD; to obtain reference 

information, we bought an encyclopedia and obtained yearly revisions. Today, each of those 

options is still available and indeed preferred in certain circumstances. However, Web 

options exist for each activity as well. In each case, we have privacy concerns, bandwidth 

concerns, and financial concerns. Nonetheless, for many of our daily practices we use these 

cyber solutions, sometimes putting our most private information in the cloud. The everyday 

practice of brain science is just beginning to benefit from similar technology development.

Other scientific disciplines have already navigated similar waters with remarkable success. 

For example, the Sloan Digital Sky Survey (SDSS) changed the daily practice of 

astronomers and cosmologists (Kent 1994). They still have the option to wait six months for 

telescope time, analyze their data locally on machines they own and maintain, and publish a 

summary of the results (and many do). Yet there are more accounts in SDSS than there are 

professional cosmologists. Astronomers can now log in to SDSS, find previously published 

data, run database queries (a skill they typically did not have prior to SDSS), and publish the 

queries and results. Similarly, molecular geneticists historically sequenced their own data 

(using machines that they owned and maintained), analyzed it locally, and published the 

results. Now, they can outsource the sequencing to avoid owning and maintaining the 

machines, upload the sequences to a national or international database, quantitatively 

compare their sequences to previously published sequences, and then publish their findings. 

The success of these efforts is evident from the cultural shift of daily practices by many, if 

not most participants in each field. Both fields resolved issues of data privacy, data 

ownership, governance, and financial concerns, providing a proof of principle that other 

scientific disciplines can do the same.
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In neuroscience, many of our scientific practices remain based on pre-internet methods. A 

scientist designs an experiment, collects data, stores it locally, keeps metadata in his head or 

in some custom spreadsheet, analyzes it using software that hs buys and installs on local 

computers that he updates regularly, and publishes a summary of the results. We predict that 

another strategy will be superior for many situations: as the scientist collects data, it gets 

stored privately or publicly in the cloud, she then selects analyses to occur automatically, 

having the flexibility to pull from a variety of previously published analyses, and finally 

publishes entire “digital experiments”, containing (some of) the data and the entire analysis 

pipeline.

What Are the Primary Goals?

We see two key goals that, if achieved, would leverage advances in computing to accelerate 

brain sciences. The first goal is to make reproducibility and extensibility of science as easy 
as possible, even for small amounts of data or simple data. The current practices of private 

data storage and siloed analyses make reproducing an analytic result tedious at best and 

impossible at worst. The steps can include requesting the data, identifying the formats and 

organization, requesting the code, deciding which functions to run and how, getting all 

necessary dependencies installed, making sure to use the same software versions, and 

accessing the same computational hardware. Solutions now exist to mitigate each of these 

challenges, though they are relatively disparate and unconnected. Data can be uploaded to 

data repositories (e.g., https://figshare.com/), data standards have been proposed for many 

domains of brain science (e.g., http://bids.neuroimaging.io/, http://www.nwb.org/), code can 

be stored in publicly accessible repositories (e.g., https://github.com/), interactive tutorials 

can be provided (e.g., using http://jupyter.org/), all necessary software dependencies can be 

easily packaged together (e.g., using https://www.docker.com/), and can be run “in the 

cloud” (e.g., using http://mybinder.org/) on commercial service providers (e.g., on https://

aws.amazon.com/ec2/ or https://cloud.google.com/). Nonetheless, given some new data, it is 

not obvious where to find reference algorithms or how to connect them to the data. 

Similarly, given a new model, it is not clear how to find reference data, figure out which 

standard it is using and then fit it, and determine if others have done the same to allow us to 

compare and assess the results. In either case, once the data are processed, it remains 

difficult to keep track of the resulting data derivatives and which version of which code 

resulted in which outputs. So, although many of the pieces are in place, there is still no 

unified “glue” that makes everything work together seamlessly. Moreover, each of the 

above-mentioned tools can be used by some brain scientists, but most tools are designed for 

data scientists, so the learning curve can be incredibly steep. Ideally there would be a place 

where brain scientists could find all relevant analyses and data, run each analysis on each 

dataset, and see a leaderboard comparing performances, without writing any lines of code. 

Cloud-based solutions simplify reproducibility and extensibility by essentially eliminating 

activation energy and extraneous sources of analytic variability.

The second goal is to enable such a system to work with “big data” (i.e., data too large to fit 
on a workstation). Data are scaling in many domains in brain science, either because 

individual experiments are large (as in calcium imaging and whole-brain CLARITY 

imaging), or there are thousands of subjects with gigabytes of data each (as in large-scale 
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human brain imaging projects), or there are millions of time points (as in wearable sensor 

data). Regardless of source and modality, if it is “medium data” (meaning too large to fit in 

memory, but small enough to fit on your computer), tasks as simple as visualizing, rotating, 

and opening the data are challenging using standard tools such as MATLAB, Python, or 

ImageJ. For big data, the challenges are even larger, as questions of how to store, compress, 

manage, and archive the data exceed the computational capabilities and resources of most 

experimental labs. Cloud-based solutions simplify big data analysis due to their inherently 

scalable nature.

What's the Big Idea?

We are proposing to design, build, and deploy an instance of "cloud neuroscience", meaning 

that the data, the code, and the analytic results all live in the cloud together. Cloud 

neuroscience can be thought of as an operating system, a set of programs that run on it, a file 

system that stores the data, and the data itself, all designed to run in a scalable fashion and to 

be accessible from anywhere.

What are the Design Criteria?

First and foremost, the design and construction should be organic, grassroots, and open 

source, to ensure that it remains intimately connected to the needs of all scientific citizens. 

Over 100,000 people attend annual conferences, including neuroscience, psychology, 

psychiatry, and neurology. This is a massive human capital resource, so the system should 

enable contributions from any of them, regardless of background or resources. Thus the 

system needs to support data and workflows of all kinds, regardless of modality, complexity, 

or scale—including raw data, derived data, and metadata. Doing so would also further 

democratize brain sciences, opening the door to the additional 3.5 billion people with mobile 

broadband access who could contribute if given the opportunity. Encouraging and 

supporting such involvement motivates an emphasis on ethical standards and cultural 

sensitivities. Moreover, millions of hours and billions of dollars have been spent developing 

brain science resources, including vast quantities of data, algorithms, and models. The 

system should build upon such work. Because different people have different preferences, 

access controls should be flexible enough to satisfy everyone’s needs. For resources that are 

open, reproducing and extending prior work should be “turn-key”, allowing researchers to 

“swap-in” different datasets or algorithms as desired. Industry is making tremendous 

headway in this regard, including digital notebooks to keep track of all analyses, software 

containers to ease the burden of installing and configuring software, and Web-services that 

dynamically provide computational resources as needed. To the extent possible, we should 

leverage these resources and engage with non profit, institutional, and corporate partners to 

express our domain-specific needs. The design should be highly adaptive, to capitalize on 

rapid advances from within and outside brain sciences, and of course open-source with 

permissive licenses. And the entire system should be able to run not just in a single 

commercial cloud, but also on other clouds, national resources, institutional clusters, local 

workstations and laptops, to enable maximal portability and utility. Perhaps most 

importantly, the system should be universally useful, helping to answer the grand challenges 

of brain science while facilitating much greater participation in the scientific process.
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The motivation underlying this endeavor is to accelerate the scientific process by improving 

the experience of doing brain science. Thus the community can determine the worst pain 

points in our process and design solutions around them. For example, if looking at data is the 

largest bottleneck, then one could use a cloud-based visualization app (like Google Maps, 

CATMAID, or NeuroDataViz). On the other hand, if the largest bottleneck is getting data 

into a common format before running analyses, then you would benefit from having all the 

data stored in a format with a standardized application programming interface (API) so 

every dataset can be accessed in the same way. In other words, it is time for the scientific 

community to prioritize the user experience to focus the subsequent software development.

How Might we Achieve It?

In this section we propose a potential design of the constituent components that could 

comprise an instance of cloud neuroscience (see below Figure). The required elements can 

be divided into into five categories: Data, Infrastructure, Apps, Algorithms, and Education. 

The goal of breaking down the problem this way is to ensure that all brain scientists, 

professional and citizen alike, can contribute to and benefit from the system. Crucial to 

success will be tight integration across components, each of which is described in some 

detail below. Some brain scientists are able to span the full range from design to analysis 

including: design and run experiments, analyze data, make discoveries, and even write 

articles. Such polymaths can seamlessly alternate between different roles. Others might be 

highly skilled in software engineering, but not data collection. To ensure that all brain 

scientists can contribute to this effort, we have organized types of activities according to the 

“role” of the individual performing those activities. These roles are not meant to be 

prescriptive, rather, they serve to help guide scientists to the kinds of contributions they 

could make. (see Box I for detailed description of the roles).

Data

The data component is intended to mitigate difficulties with storing and accessing data, 

regardless of the modality, scale, or complexity of the data. Anybody would be able to 

upload raw data, derived data, and metadata as it flows off the sensors and dynamically 

control access. Functionality would build on and incorporate existing brain-science data 

repositories (Poldrack et al. 2013; Crawford et al. 2016; Teeters et al. 2008; Ascoli et al. 

2007; Burns et al. 2013), as well as more general services (e.g., FigShare). Therefore, the 

technical challenges for small and large data storage and access, for the most part, already 

have reasonable solutions for many data types. The remaining challenges are to further lower 

the barrier to entry, making data upload and access easier, especially for multi-terabyte 

datasets.

Data contributions will be able to come from anyone and could be stored in a variety of 

accessible places to minimize transfer cost and time. Access controls would enable scalable 

sharing with minimal effort. Storage costs would be the responsibility of the data provider if 

the data are private; if public, others could financially contribute. In either case, economies 

of scale would reduce storage costs, and we would work with commercial clouds and 
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national infrastructures to offset costs to the extent possible. The data-storage formats would 

allow visualization and analysis at scale.

Data contribution would be desirable and possible from any lab, regardless of their financial 

resources or locations. For example, some methods are relatively inexpensive, such as EEG, 

fNIRS, and wearable technologies. Moreover, certain important subpopulations are better 

represented in less wealthy countries, enabling unique contributions from those places. If the 

same measures are included in more expensive projects, analysis bridges could be 

established between the datasets. This would enhance translational research at a global 

scale.. These factors would lead to important collaborations in which less wealthy countries 

could influence the content and usefulness of this effort (Anon n.d.).

Data types would include raw, derived, and metadata (see Box II for additional details). Raw 

data includes data from any kind of experiment, including anatomical, physiological, 

behavioral, (epi-) genetic, and medical data. Every experiment will be given a unique data 

identifier. Medical data will be given special attention to ensure compliance with national 

guidelines for patient privacy. Each data type will yield a wide diversity of derived data, 

including summary statistics, matrices, networks, shapes, and more. Associated with each 

entry is a collection of metadata, including a community-driven controlled vocabulary, as 

well as custom ad hoc fields. Metadata on the derived data will include detailed provenance 

history. The system would be seeded with existing reference datasets spanning spatial, 

temporal, and phylogenetic scales, including data from the Human Brain Project, the Human 

Connectome Project, the Allen Institute for Brain Science’s data portal, IARPA’s MICrONs 

program, and more.

Infrastructure

The Infrastructure component is intended to mitigate difficulties in finding data or tools, 

linking them together, installing software, managing computers, and reproducing and 

extending results. When the infrastructure is operational, much of the scientific process can 

be conducted from a tablet or smartphone, replacing the need to buy and maintain high-

power computers or keep software up-to-date. The infrastructure is essentially the operating 

system upon which all the services would run, akin to NeuroDebian (Halchenko & Hanke 

2012), but designed specifically for the cloud. This virtual operating system will run in the 

commercial cloud, on institutional resources, national centers, or local workstations, 

regardless of hardware configuration (e.g., Mac, Windows, Linux, etc.) The software could 

be designed and written by a small and distributed team of architects to facilitate design 

decisions considering diverse use cases.

The Infrastructure could be composed of two core sub-components. First, a Data 
Management System would store and organize all the data. This could include managing 

access, assigning digital object identifiers (DOIs), and supporting common data formats, and 

would be easily extensible to new or custom formats. Data could also be compressed with or 

without loss, as desired by the contributor. Technically, data would be stored in a set of 

databases optimized for different brain science use cases. Second, a Workflow Management 
System would store and organize analyses, leveraging existing Web services such as Github 

and continuous integration to the extent possible. This would enable “digital experiments”, 
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including all stages of data processing. Crucially, such experiments could be done on 

different hardware platforms, applied to different data (by merely swapping the DOI), or use 

different algorithms (a similarly simple modification). All infrastructure services would have 

easy to use APIs to maximize utility and extensibility.

Apps

The Apps component is intended to mitigate difficulties in maintaining software versions, 

paying for software, and finding tools appropriate to run on data. Apps are the programs that 

run on the system, akin to tools like Dropbox (to upload/download), Google Maps (to 

visualize), Pubmed Central (to search for information), BLAST (to compare your data with 

other data), and pipelines (to process your data). Apps can be developed by anybody with 

minimal programming skills, due to the careful design of the APIs in the infrastructure. A 

specification would be formalized and quality standards agreed upon by the community of 

users to publish apps in the open app marketplace. Different apps would be designed for 

users with different backgrounds, roles, and goals. For example, apps targeted at people in 

the experimentalist role could include features to enable uploading, downloading, and 

managing access without having to learn the APIs. On the other hand, apps targeted at 

people in the data analysis role could include pre-processing data, fitting models, testing 

hypotheses, plotting results, and running digital experiments. General purpose apps would 

include tools to visualize, manipulate, and manually annotate data. These general-purpose 

apps enable a much broader community of users to participate in the scientific process, 

including those without extensive technical training or financial resources.

Algorithms

The Algorithms component is intended to mitigate difficulties in analyzing data with 

increasing scale or complexity. Recent advances in artificial intelligence, including 

distributed machine learning libraries and deep learning, could be leveraged here. 

Algorithms operate on simulated, measured, or derived data to produce transformed 

representations or summary statistics of the data. Algorithms can be written by anybody 

with minimal data-science skills, including many current brain scientists, without knowledge 

of this proposed system (unlike Apps). Algorithms are essentially “wrapped” in Apps to run, 

and therefore inherit many of the conveniences of the system. We partition algorithms into 

three different types. Scalable data processing algorithms can be applied to a wide variety of 

kinds of data. These will be easily daisy-chained together to obtain pipelines, which can 

similarly be adapted to apply different algorithms or data. Because algorithms will be 

applied more generally to less familiar data, or less familiar algorithms will be applied to 

familiar data, quality assessment will be particularly important. This would include both 

qualitative dashboards providing figures and quantitative metrics to evaluate and compare 

performances along different metrics. Finally, to optimize resources and avoid duplicating 

efforts across labs, experiments will need to be useful for a large number of people. 

Experimental design will therefore be a key algorithmic component as well.

Education—Just like there is a learning curve when switching from Windows to Mac, so 

too switching from current practices to this system will involve a learning curve. Therefore, 

the success of this endeavor will depend on extensive educational material, including 
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documentation, tutorials, online courses, hackathons, workshops, and summer courses. All 

the content will be designed to complement existing educational resources, such as Coursera 

courses. The variety of educational resources would reflect the backgrounds and skills of the 

user and contributor communities, with the goal of universal access. Because of this variety, 

community-driven cultural sensitivity guidelines would be posted for all contribution types.

Discussion

Here we describe an immediately actionable grassroots proposal to marry recent advances in 

neurodata acquisition with scalable cloud-computing in order to accelerate the process of 

discovery by scientists independent of how well-resourced they are. There are several 

mechanisms by which Cloud Neuroscience may yield benefits. Global collaborations may 

become much simpler and therefore more prevalent. Open science may be facilitated, and 

the barriers and benefits to conducting open science may become more transparent by virtue 

of the design. Many models can be tested on the same dataset, and individual models can be 

subjected to greater diversity of data-based reality-checks. In the near-term, any effort that 

generates reference data of interest to a large segment of the community can benefit from 

Cloud Neuroscience. One example is the upcoming ~10 petabytes from the IARPA 

MICrONS program.

Several potential criticisms are worth addressing, and many details need to be fleshed out. 

Privacy concerns for human data will require careful additional thinking so that best 

practices of anonymization and security can implemented—precedent is provided by 

ongoing large research initiatives (e.g., (Sarwate et al. 2014; Jack et al. 2008; Murphy et al. 

2010)). A viable financial model will be required. Potential partners include national 

laboratories that could contribute computing and storage resources, or companies interested 

in providing cloud-based Web-services for specific scientific subdomains. Return on 

investment must be considered. Cosmology, molecular genetics, and plant biology (see 

http://www.cyverse.org/) are existence proofs that when designed well, such resources can 

yield dramatic and positive impact on the field. Other cloud-computing neuroscience efforts 

that focus on the human brain are already underway, such as CBRAIN (Das et al. 2016) 

(human brain imaging) and the Human Brain Project (human brain modeling). Such efforts 

are important; the proposed project has been designed to leverage the developments from 

those projects, and extend them to address a greater diversity of brain science questions, 

species, data modalities, and functionalities.

The above plans and challenges suggest immediately actionable next steps. A field engineer 

has been appointed to develop a survey to determine which existing resources are most 

useful (pooling information from places like https://github.com/ and https://www.nitrc.org/) 

and what new resources would be most useful. A software engineer has agreed to contribute 

significant effort towards building a “Neuroscience as a Service” framework (the virtual 

operating system and apps described above) based upon existing related services. They will 

begin formalizing minimal specifications for all resources. We have also obtained private 

seed funding to hire an additional senior software engineer. To gather community feedback, 

we will be monitoring https://neurostars.org/ for any posts that contain the tag “neurocloud”. 

Next, sustainable governance, funding, and advisory models will be devised.
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Pablo Picasso famously quipped, “Every child is an artist. The problem is how to remain an 

artist once we grow up.” As the next generation of brain scientists grows up, we have an 

opportunity to provide them with a canvas on which they can craft ever more creative 

portraits of our minds. Cloud neuroscience is one step we can take in that direction.
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BOX 1

Roles

We enumerate six different roles for participants. Note that these are not characterizing 

individuals, rather, roles that any individual play. Roles differ in their degree of interest 

and expertise in various aspects of the scientific process, all of which are important.

Experimentalist A person in this role is acquiring data. This includes activities such as 

recruiting subjects and specifying inclusion guidelines (for human studies), experimental 

setup, subject care, data acquisition, as well as some aspects of data management and 

quality control. In this role, a person has extensive knowledge of the experiment details, 

though computational acumen can be quite modest.

Architect A person in this role is developing the Neuroscience as a Service component. 

She will be a professional software engineer working collaboratively on open source 

repositories, possibly co-localized.

App Engineer A person in this role is writing apps. These apps might wrap algorithms 

written by themselves or others. This person knows and implements best practices of 

software development for science, including proper documentation.

Data Scientist A person in this role is writing and running algorithms. These algorithms 

might serve any step of the scientific process. Data scientists have a wide variety of 

computational backgrounds, including engineering, physics, mathematics, statistics, and 

computer scientists.

Scientific User A person in this role is using tools to analyze and understand the data. 

This can take many forms, ranging from looking at images and figures generated directly 

from the data acquisition system, to fitting statistical models and combining multiple 

disparate datasets. In this role, computational acumen is not required. Familiarity with the 

data, experimental details, etc., can also be widely varying.

Educator A person in this role is either creating or presenting educational content, 

including documentation, tutorials, and Massive Online Open Courses, as well as running 

workshops, hackathons, and summer courses.

Vogelstein et al. Page 12

Neuron. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BOX II

Types of Brain Science Data

Functional data is fundamentally temporal and dynamic. Whether it is univariate or 

multivariate, the standard operations to apply include zooming in time, subsampling, 

smoothing, and converting to other domains such as the fourier domain. Functional data 

also have a spatial domain, which links them to Structural data. The subdivision between 

functional and structural data may be, for some data, ambiguous.

Structural data is fundamentally spatial in nature, include two-dimensional (2D) images, 

3D volumes, and 4D and 5D hypervolumes for multispectral and/or time-varying data 

(spatiotemporal data, such as fMRI and calcium imaging, are both structural and 

functional). This can include structural images, as well as sparse fluorescent images, gene 

expression maps, etc. Standard operations for these data include different compression 

algorithms, downloads of volumes of arbitrary sizes and shapes, maximum projections, 

averages, and more.

‘Omics data is sequential and categorical, including the genome, epigenome, 

metabolome, and microbiome. Standard queries for genetic data include sequence 

compression, alignment, and comparisons. ‘Omics data may also have a spatial domain 

(e.g., gene expression data).

Behavioral data can be of several different types. For example, behavior can be captured 

via video capture (e.g., behavioral observation of children during play), time series of 

task events during physiological measurements, questionnaires (e.g., symptom 

checklists), performance testing instruments (e.g., such as the NIH Toolbox), and other 

devices (e.g., actigraphy, voice recorders). Each data has unique qualities and, therefore, 

functionality.

Medical data includes all electronic health data, including semi-structured text. It is 

amongst the most challenging of data types to aggregate, as until recently, the vast 

majority of the field has relied on paper charts or poorly structured electronic health 

record (EHR) systems. Fortunately, regulatory and funding agencies are incentivizing the 

widespread use of EHR’s, as well as common data elements that are more amenable to 

data aggregation for the purposes of discovery science (e.g., the eMerge Network). 

Additionally, informatics frameworks are being developed to safely link disparate EHR 

data (e.g., https://www.i2b2.org/), and calls for the creation of open API’s are gaining 

attention.
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Figure 1. 
The upward spiral of science.
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Figure 2. 
Schematic of the five proposed components. An individual can adopt any or all of the five 

roles (color coded dashed rectangles). For each component, the cloud content is generated 

by individuals in one of the five roles.
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